Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.more » « less
-
Prestress in amorphous solids bears the memory of their formation and plays a profound role in their mechanical properties. Here we develop a set of mathematical tools to investigate mechanical response of prestressed systems, using stress rather than strain as the fundamental variable. This theory allows microscopic prestress to vary for the same bond or contact configuration and is particularly convenient for nonconservative systems, such as granular packings and jammed suspensions, where there is no well-defined reference state, invalidating conventional elasticity. Using prestressed nonconservative triangular lattices and a computational model of amorphous solids, we show that drastically different mechanical responses can show up in amorphous materials at the same density, due to nonconservative interactions which evolve over time, or different preparation protocols. In both cases, the information is encoded in the prestress of the network and not visible at all from the configurations of the network in the case of nonconservative interactions.more » « less
An official website of the United States government

Full Text Available